<u>Prop:</u> Given a parametrization X with $T_pS = Span \{X_{u_1}, X_{u_2}\}$, the shape operator $S = -dN_p : T_pS \longrightarrow T_pS$ is given by the matrix: $S = (\Im_{ij})^{i} (A_{ij}) \longrightarrow (\#)$

Proof: By definition,

$$\begin{cases}
S\left(\frac{\partial}{\partial u_{1}}\right) = -dN\left(\frac{\partial}{\partial u_{2}}\right) = -\frac{\partial N}{\partial u_{1}} = a\frac{\partial}{\partial u_{1}} + b\frac{\partial}{\partial u_{2}} \\
S\left(\frac{\partial}{\partial u_{2}}\right) = -dN\left(\frac{\partial}{\partial u_{2}}\right) = -\frac{\partial N}{\partial u_{2}} = c\frac{\partial}{\partial u_{1}} + d\frac{\partial}{\partial u_{2}}
\end{cases}$$

Written as matrices,

$$\begin{pmatrix} | & | \\ -\frac{\partial N}{\partial u_1} - \frac{\partial N}{\partial u_2} \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} \\ | & | \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$\Rightarrow \underbrace{\begin{pmatrix} -\frac{\partial}{\partial u_{i}} - \\ -\frac{\partial}{\partial u_{i}} - \\ -\frac{\partial}{\partial u_{i}} - \end{pmatrix}}_{(A:j)} \begin{pmatrix} | & | \\ -\frac{\partial N}{\partial u_{i}} - \frac{\partial N}{\partial u_{i}} \end{pmatrix}}_{(A:j)} = \underbrace{\begin{pmatrix} -\frac{\partial}{\partial u_{i}} - \\ -\frac{\partial}{\partial u_{i}} - \\ -\frac{\partial}{\partial u_{i}} - \end{pmatrix}}_{(9:j)} \begin{pmatrix} | & | \\ \frac{\partial}{\partial u_{i}} - \frac{\partial}{\partial u_{i}} \end{pmatrix}}_{(9:j)}$$

Multiplying (?; ;) -1 yields (#).

-0

§ Normal curvatures (do Carmo § 3.2)

We now want to interpret the 2nd f.f. A as evaluating the curvature of certain plane curves lying on S.

Let $S \subseteq \mathbb{R}^3$ be a surface oriented by \mathbb{N} .

Consider the oriented plane

$$P_v = \text{Span} \{v, N_p\}$$

pos. orientetion
which cats S along some regular
curve (why?) p.b.a.d.
 $d: (-\varepsilon, \varepsilon) \longrightarrow S$ s.t. $\alpha(o) = p$, $\alpha'(o) = v$
which can also be regarded as a plane curve on P_v
with curvature $k_v = \langle \alpha''(o), N_p \rangle - (*)$

i.e. $A(V, V) = k_V$ (normal curvature along V)

By the variational characterization of eigenvalues, the principal curvatures (at p) are

We have the following local picture of surfaces:

§ Totally Umbilic Surfaces (do Carmo § 3.2)

<u>Thm</u>: $S \subseteq \mathbb{R}^3$ connected \implies S is contained in totally umbilic a plane or sphere.

Proof: Recall that totally umbilic means

$$\mathcal{K}_{1}(p) = \mathcal{K}_{2}(p)$$
 at every $p \in S$

i.e. \exists function $f: S \longrightarrow \mathbb{R}$ s.t.

 $S = -dN_{p} = f(p) Id : T_{p}S \rightarrow T_{p}S$

Ex: Show that f is smooth!

For any parametrization X(u,v) on S, $\begin{cases} S\left(\frac{\partial X}{\partial u}\right) = f \frac{\partial X}{\partial u} \\ S\left(\frac{\partial X}{\partial v}\right) = f \frac{\partial X}{\partial v} \end{cases} \Rightarrow \begin{cases} -\frac{\partial N}{\partial u} = f \frac{\partial X}{\partial u} \\ -\frac{\partial N}{\partial v} = f \frac{\partial X}{\partial v} \end{cases} (*)$ $\Rightarrow \begin{cases} -\frac{\partial^2 N}{\partial v \partial u} = \frac{\partial f}{\partial v} \frac{\partial X}{\partial u} + f \frac{\partial^2 X}{\partial v \partial u} \\ -\frac{\partial^2 N}{\partial v \partial u} = \frac{\partial f}{\partial v} \frac{\partial X}{\partial u} + f \frac{\partial^2 X}{\partial v \partial u} \\ -\frac{\partial^2 N}{\partial v \partial u} = \frac{\partial f}{\partial u} \frac{\partial X}{\partial v} + f \frac{\partial^2 X}{\partial v \partial u} \end{cases}$

$$\Rightarrow \qquad \frac{\partial f}{\partial v} \frac{\partial X}{\partial u} = \frac{\partial f}{\partial u} \frac{\partial X}{\partial v}$$

$$\Rightarrow \qquad \frac{\partial f}{\partial v} = \frac{\partial f}{\partial u} \equiv 0 \qquad \left(\because \left\{\frac{\partial X}{\partial u}, \frac{\partial X}{\partial v}\right\} \text{ lin. indep.}\right)$$

i.e. f is (locally) constant (\because S connected)

$$\frac{Case \ 1}{f} = 0 \implies N \equiv const. \quad plane!$$

$$\frac{Case \ 2}{f} = c \neq 0$$

<u>Claim</u>: S is contained in a sphere of radius $\frac{1}{101}$ It suffices to show:

$$X + \frac{1}{f} N \equiv const. Po$$
 Center of the sphere

Note that :

$$\frac{\partial}{\partial u}\left(\mathbf{X} + \frac{1}{f}\mathbf{N}\right) = \frac{\partial \mathbf{X}}{\partial u} + \frac{1}{f}\frac{\partial \mathbf{N}}{\partial u} \stackrel{(\mathbf{x})}{\equiv} \mathbf{0}$$

Similarly,

$$\frac{\partial}{\partial u} \left(\mathbf{X} + \frac{\mathbf{I}}{\mathbf{f}} \mathbf{N} \right) = \mathbf{0} \quad .$$

This proves the claim since S is connected.

a _____

